1dir.cloud - 1dir.org - 1dir.cc
1 decimal integer ring cycle of many
Quantum Field Fractal Polarization Math Constants
nemeth braille printable arx calc
ᐱ Y φ Θ P Q Ψ
condensed matter
Complex sets of Y Phi Theta Prime Q Psi Quotient Based Numerals
nu mer numer i call numerical nomenclature & arc ratio constants
Variables of A LIST A B D E F G H I J K L M N O P Q R S T U V W X Y Z φ Θ Ψ ᐱ ᗑ ∘⧊° ∘∇° are applicable to a function.
+⅄=(nncn+nncn) that a function path is factored to the definition of the function path rather than pemdas order of operations.
Variables are factorable to a measured units that then be later can applied in functions of proper order of operations that is parenthesis, exponents, multiplication, division, addition, and then subtraction.
Function path +⅄=(nncn+nncn) is nncn a number or variable with a repeating or not repeating decimal stem cycle variant added with nncn another a number or variable with a repeating or not repeating decimal stem cycle variant.
⅄+⅄A examples
+⅄ᐱA multiplication complex function of Ancn variables
if A=∈1⅄(φ/Q)cn and path ⅄ of Q is a variant in the definition of A then
A=1⅄(φn2/Qn1)=[(Yn3/Yn2)/(P/P) while Q requires path definition of 1⅄Q or 2⅄Q from P two sets of A complete the formula of Q variable.
A=1⅄(φn2/1⅄Qn1)=[(Yn3/Yn2)/(Pn2/Pn1)=(1/1)/(3/2)=(1/1.5)=0.^6
and
A=1⅄(φn2/2⅄Qn1c1)=[(Yn3/Yn2)/(Pn1/Pn2)=(1/1)/(2/3)=(1/0.^6)=1.^6
Applied function of +⅄=(nncn+nncn) with A variables is then
+⅄ᐱ of A1⅄(φn2 + 1⅄Qn1)=[(Yn3/Yn2) + (Pn2/Pn1)=(1+1.5)=2.5
and
+⅄ᐱ of A1⅄(φn2 + 2⅄Qn1c1)=[(Yn3/Yn2) + (Pn1/Pn2)=(1+0.^6)=1.6
Any change in cn stem decimal cycle count variable will change the added in the example and ultimately the final sum value also.
For example +⅄ᐱ of A1⅄(φn2 + 2⅄Qn1c2)=[(Yn3/Yn2) + (Pn1/Pn2)=(1+0.^66)=1.66
if A=∈1⅄(φ/Q) and +⅄=(nncn+nncn) then (φn + 1⅄Qn) ≠ (φn + 2⅄Qn) ≠ (Ancn + Ancn)
Alternately rather than adding variables of A base φn + 1⅄Qn and adding variables of A base φn + 2⅄Qn factored variables of are Ancn added in the function ∈n+⅄ᐱ(Ancn+Ancn) and ∈n+⅄ᐱ represents notation of a complex function.
Then +⅄=(nncn+nncn) function path applied to variables A B D E F G H I J K L M N O P Q R S T U V W X Y Z φ Θ ᐱ ᗑ ∘⧊° ∘∇° with completed set A=∈1⅄(φ/Q)cn that are An1cn to Ancn
∈n+⅄ᐱ(Ancn+Ancn), ∈n+⅄ᐱ(Ancn+Bncn), ∈n+⅄ᐱ(Ancn+Dncn), ∈n+⅄ᐱ(Ancn+Encn), ∈n+⅄ᐱ(Ancn+Fncn), ∈n+⅄ᐱ(Ancn+Gncn), ∈n+⅄ᐱ(Ancn+Hncn), ∈n+⅄ᐱ(Ancn+Incn), ∈n+⅄ᐱ(Ancn+Jncn), ∈n+⅄ᐱ(Ancn+Kncn), ∈n+⅄ᐱ(Ancn+Lncn), ∈n+⅄ᐱ(Ancn+Mncn), ∈n+⅄ᐱ(Ancn+Nncn), ∈n+⅄ᐱ(Ancn+Oncn), ∈n+⅄ᐱ(Ancn+Pn), ∈n+⅄ᐱ(Ancn+Qncn), ∈n+⅄ᐱ(Ancn+Rncn), ∈n+⅄ᐱ(Ancn+Sncn), ∈n+⅄ᐱ(Ancn+Tncn), ∈n+⅄ᐱ(Ancn+Uncn), ∈n+⅄ᐱ(Ancn+Vncn), ∈n+⅄ᐱ(Ancn+Wncn), ∈n+⅄ᐱ(Ancn+Yn), ∈n+⅄ᐱ(Ancn+Zncn), ∈n+⅄ᐱ(Ancn+φncn), ∈n+⅄ᐱ(Ancn+Θncn), ∈n+⅄ᐱ(Ancn+Ψncn), ∈n+⅄ᐱ(Ancn+ᐱncn), ∈n+⅄ᐱ(Ancn+ᗑncn), ∈n+⅄ᐱ(Ancn+∘⧊°ncn), ∈n+⅄ᐱ(Ancn+∘∇°ncn)
∈n+⅄ᐱ(Ancn+Ancn) example given variants of 1⅄Qn1 and 2⅄Qn1c1 of ∈An1
if An1 of 1⅄(φn2/1⅄Qn1)=[(Yn3/Yn2)/(Pn2/Pn1)=(1/1)/(3/2)=(1/1.5)=0.^6
and
An1 of 1⅄(φn2/2⅄Qn1c1)=[(Yn3/Yn2)/(Pn1/Pn2)=(1/1)/(2/3)=(1/0.^6)=1.^6
while
An2 of 1⅄(φn3/1⅄Qn2)=[(Yn4/Yn3)/(Pn3/Pn2)=(3/2)/(5/3)=(1.5/1.^6)=0.9375
and
An2 of 1⅄(φn3/2⅄Qn2)=[(Yn4/Yn3)/(Pn2/Pn3)=(3/2)/(3/5)=(1.5/0.6)=2.5
then
n+⅄ᐱA has an array of base sets to ∈n+⅄ᐱ(Ancn+Ancn)
(1⅄Qn1) variant of A is +⅄ᐱAn1 [An1 of 1⅄(φn2/1⅄Qn1)] + [An2 of 1⅄(φn3/1⅄Qn2)]=(0.^6+0.9375)=1.5375
(2⅄Qn1c1) variant of A is +⅄ᐱAn1 [An1 of 1⅄(φn2/2⅄Qn1c1)] + [An2 of 1⅄(φn3/2⅄Qn2c1)]=(1.^6+2.5)=4.1
alternately a path adding variables of A with varying Q paths n⅄ is ∈n⅄ᐱ(Ancn of 2⅄Qn xAncn of 1⅄Qn)
(1⅄Qn1cn and 2⅄Qn1cn) variant of A is +⅄ᐱAn1 [An1 of 1⅄(φn2/1⅄Qn1)] + [An1 of 1⅄(φn2/2⅄Qn1)]=(0.^6+1.^6)=2.2
So adding variables
(φn2 x 1⅄Qn1) from +⅄ᐱ of A1⅄(φn2 + 1⅄Qn1)=(1+1.5)=2.5
and adding variables
(φn2 x 2⅄Qn1c1) from +⅄ᐱ of A1⅄(φn2 + 2⅄Qn1c1)=(1+0.^6)=1.6
and adding variables
(φn2 x 2⅄Qn1c1) from +⅄ᐱ of A1⅄(φn2 + 2⅄Qn1c2)=(1+0.^66)=1.66
for 2⅄Qn1c2 of 2⅄Qn1cnc stem decimal variant of variable in +⅄ᐱ of A1⅄(φn2 + 2⅄Qn1cn)
While adding variables
An1 and An2 of 1⅄(φn/1⅄Qn)=(0.^6+0.9375)=1.5375
and adding variables
An1 and An2 of 1⅄(φn/2⅄Qn)=(1.^6+2.5)=4.1
While adding variables
An1 of 1⅄(φn/1⅄Qn) and An1 of 1⅄(φn/2⅄Qn)=(0.^6+1.^6)=2.2
and adding variables
An1 of 1⅄(φn/1⅄Qn) and An2 of 1⅄(φn/2⅄Qn)=(0.^6+2.5)=3.1
and adding variables
An1 of 1⅄(φn/2⅄Qn) and An2 of 1⅄(φn/1⅄Qn)=(1.^6+0.9375)=2.5375
While adding variables An1c2 with change in cn of Ancn variables
An1c2 and An2 of 1⅄(φn/1⅄Qn)=(0.^66+0.9375)=1.5975
and adding variables
An1c2 and An2 of 1⅄(φn/2⅄Qn)=(1.^66+2.5)=4.16
and adding variables of An1cn change
An1c2 of 1⅄(φn/1⅄Qn) and An1 of 1⅄(φn/2⅄Qn)=(0.^66+1.^6)=2.26
and adding variables of An1cn change
An1 of 1⅄(φn/1⅄Qn) and An1c2 of 1⅄(φn/2⅄Qn)=(0.^6+1.^66)=2.26
and adding variables of An1cn change
An1c2 of 1⅄(φn/1⅄Qn) and An1c2 of 1⅄(φn/2⅄Qn)=(0.^66+1.^66)=2.32
if Qn2c2 is factored through
An2 of 1⅄(φn3/1⅄Qn2c2)=[(Yn4/Yn3)/(Pn3/Pn2)=(3/2)/(5/3)=(1.5/1.^66)=2.49
rather than
An2 of 1⅄(φn3/1⅄Qn2)=[(Yn4/Yn3)/(Pn3/Pn2)=(3/2)/(5/3)=(1.5/1.^6)=0.9375
then a change in 1⅄Qncn applied to functions
An1 and An2 of 1⅄(φn/1⅄Qn)=(0.^6+0.9375)=1.5375 1⅄Qnc1 to 1⅄Qnc2 (0.^6+2.49)=3.09
An1 of 1⅄(φn/2⅄Qn) and An2 of 1⅄(φn/1⅄Qn)=(1.^6+0.9375)=2.5375 1⅄Qnc1 to 1⅄Qnc2 (1.^6+2.49)=4.09
An1c2 and An2 of 1⅄(φn/1⅄Qn)=(0.^66+0.9375)=1.5975 1⅄Qnc1 to 1⅄Qnc2 (0.^66+2.49)=3.15
And change in both 1⅄Qnc1 to 1⅄Qnc2 with variant An2 of 1⅄(φn/1⅄Qn)
An1c2 of 1⅄(φn/2⅄Qn) and An2 of 1⅄(φn/1⅄Qn)=(1.^66+2.49)=4.15
It is not that these order of operations are incorrect by any means given the path and extent of the defined variables decimal stem cycles have potential change and limit to the variable definition at cn of the variants.
The values are precise scale variables to the function of ƒ+⅄ᐱAn1cn of altered addition paths with variants Ancn and altered within the paths sub-units n⅄Qncn. These are addition sums from ratios divided by ratios from variables of consecutive bases in y fibonacci and p prime variables. ƒ+⅄ᐱ represents complex path multiplication function of complex ratios.
Isolating a variable to a defined ratio numeral and then factoring with PEMDAS is one factoring path while other paths are not arranged to PEMDAS order of operations.
So then if variables of (A) are applicable to multiplication function +⅄=(nncn+nncn) for new variables from set equations
∈n+⅄ᐱ(Ancn+Ancn), ∈n+⅄ᐱ(Ancn+Bncn), ∈n+⅄ᐱ(Ancn+Dncn), ∈n+⅄ᐱ(Ancn+Encn), ∈n+⅄ᐱ(Ancn+Fncn), ∈n+⅄ᐱ(Ancn+Gncn), ∈n+⅄ᐱ(Ancn+Hncn), ∈n+⅄ᐱ(Ancn+Incn), ∈n+⅄ᐱ(Ancn+Jncn), ∈n+⅄ᐱ(Ancn+Kncn), ∈n+⅄ᐱ(Ancn+Lncn), ∈n+⅄ᐱ(Ancn+Mncn), ∈n+⅄ᐱ(Ancn+Nncn), ∈n+⅄ᐱ(Ancn+Oncn), ∈n+⅄ᐱ(Ancn+Pn), ∈n+⅄ᐱ(Ancn+Qncn), ∈n+⅄ᐱ(Ancn+Rncn), ∈n+⅄ᐱ(Ancn+Sncn), ∈n+⅄ᐱ(Ancn+Tncn), ∈n+⅄ᐱ(Ancn+Uncn), ∈n+⅄ᐱ(Ancn+Vncn), ∈n+⅄ᐱ(Ancn+Wncn), ∈n+⅄ᐱ(Ancn+Yn), ∈n+⅄ᐱ(Ancn+Zncn), ∈n+⅄ᐱ(Ancn+φncn), ∈n+⅄ᐱ(Ancn+Θncn), ∈n+⅄ᐱ(Ancn+ᐱncn), ∈n+⅄ᐱ(Ancn+ᗑncn), ∈n+⅄ᐱ(Ancn+∘⧊°ncn), ∈n+⅄ᐱ(Ancn+∘∇°ncn)
And +⅄=(nncn+nncn) function is also applicable to example [Nncn of (Ancn+Nncn) + Nncn of (Ancn+Nncn)]=Nncn
Function +⅄=(nncn+nncn) is applicable with variables from varying equation set variables such as
∈n+⅄ᐱ(An+An), ∈n+⅄ᐱ(An+Bn), ∈n+⅄ᐱ(An+Dn), ∈n+⅄ᐱ(An+En), ∈n+⅄ᐱ(An+Fn), ∈n+⅄ᐱ(An+Gn), ∈n+⅄ᐱ(An+Hn), ∈n+⅄ᐱ(An+In), ∈n+⅄ᐱ(An+Jn), ∈n+⅄ᐱ(An+Kn), ∈n+⅄ᐱ(An+Ln), ∈n+⅄ᐱ(An+Mn), ∈n+⅄ᐱ(An+Nn), ∈n+⅄ᐱ(An+On), ∈n+⅄ᐱ(An+Pn), ∈n+⅄ᐱ(An+Qn), ∈n+⅄ᐱ(An+Rn), ∈n+⅄ᐱ(An+Sn), ∈n+⅄ᐱ(An+Tn),∈n+⅄ᐱ(An+Un), ∈n+⅄ᐱ(An+Vn), ∈n+⅄ᐱ(An+Wn), ∈n+⅄ᐱ(An+Yn), ∈n+⅄ᐱ(An+Zn), ∈n+⅄ᐱ(An+φn), ∈n+⅄ᐱ(An+Θn), ∈n+⅄ᐱ(An+Ψn), ∈n+⅄ᐱ(Ancn+ᐱncn), ∈n+⅄ᐱ(Ancn+ᗑncn), ∈n+⅄ᐱ(Ancn+∘⧊°ncn), ∈n+⅄ᐱ(Ancn+∘∇°ncn)
∈n+⅄ᐱ(Bn+An), ∈n+⅄ᐱ(Bn+Bn), ∈n+⅄ᐱ(Bn+Dn), ∈n+⅄ᐱ(Bn+En), ∈n+⅄ᐱ(Bn+Fn), ∈n+⅄ᐱ(Bn+Gn), ∈n+⅄ᐱ(Bn+Hn), ∈n+⅄ᐱ(Bn+In), ∈n+⅄ᐱ(Bn+Jn), ∈n+⅄ᐱ(Bn+Kn), ∈n+⅄ᐱ(Bn+Ln), ∈n+⅄ᐱ(Bn+Mn), ∈n+⅄ᐱ(Bn+Nn), ∈n+⅄ᐱ(Bn+On), ∈n+⅄ᐱ(Bn+Pn), ∈n+⅄ᐱ(Bn+Qn), ∈n+⅄ᐱ(Bn+Rn), ∈n+⅄ᐱ(Bn+Sn), ∈n+⅄ᐱ(Bn+Tn),∈n+⅄ᐱ(Bn+Un), ∈n+⅄ᐱ(Bn+Vn), ∈n+⅄ᐱ(Bn+Wn), ∈n+⅄ᐱ(Bn+Yn), ∈n+⅄ᐱ(Bn+Zn), ∈n+⅄ᐱ(Bn+φn), ∈n+⅄ᐱ(Bn+Θn), ∈n+⅄ᐱ(Bn+Ψn), ∈n+⅄ᐱ(Bncn+ᐱncn), ∈n+⅄ᐱ(Bncn+ᗑncn), ∈n+⅄ᐱ(Bncn+∘⧊°ncn), ∈n+⅄ᐱ(Bncn+∘∇°ncn)
∈n+⅄ᐱ(Dn+An), ∈n+⅄ᐱ(Dn+Bn), ∈n+⅄ᐱ(Dn+Dn), ∈n+⅄ᐱ(Dn+En), ∈n+⅄ᐱ(Dn+Fn), ∈n+⅄ᐱ(Dn+Gn), ∈n+⅄ᐱ(Dn+Hn), ∈n+⅄ᐱ(Dn+In), ∈n+⅄ᐱ(Dn+Jn), ∈n+⅄ᐱ(Dn+Kn), ∈n+⅄ᐱ(Dn+Ln), ∈n+⅄ᐱ(Dn+Mn), ∈n+⅄ᐱ(Dn+Nn), ∈n+⅄ᐱ(Dn+On), ∈n+⅄ᐱ(Dn+Pn), ∈n+⅄ᐱ(Dn+Qn), ∈n+⅄ᐱ(Dn+Rn), ∈n+⅄ᐱ(Dn+Sn), ∈n+⅄ᐱ(Dn+Tn),∈n+⅄ᐱ(Dn+Un), ∈n+⅄ᐱ(Dn+Vn), ∈n+⅄ᐱ(Dn+Wn), ∈n+⅄ᐱ(Dn+Yn), ∈n+⅄ᐱ(Dn+Zn), ∈n+⅄ᐱ(Dn+φn), ∈n+⅄ᐱ(Dn+Θn), ∈n+⅄ᐱ(Dn+Ψn), ∈n+⅄ᐱ(Dncn+ᐱncn), ∈n+⅄ᐱ(Dncn+ᗑncn), ∈n+⅄ᐱ(Dncn+∘⧊°ncn), ∈n+⅄ᐱ(Dncn+∘∇°ncn)
∈n+⅄ᐱ(En+An), ∈n+⅄ᐱ(En+Bn), ∈n+⅄ᐱ(En+Dn), ∈n+⅄ᐱ(En+En), ∈n+⅄ᐱ(En+Fn), ∈n+⅄ᐱ(En+Gn), ∈n+⅄ᐱ(En+Hn), ∈n+⅄ᐱ(En+In), ∈n+⅄ᐱ(En+Jn), ∈n+⅄ᐱ(En+Kn), ∈n+⅄ᐱ(En+Ln), ∈n+⅄ᐱ(En+Mn), ∈n+⅄ᐱ(En+Nn), ∈n+⅄ᐱ(En+On), ∈n+⅄ᐱ(En+Pn), ∈n+⅄ᐱ(En+⅄Qn), ∈n+⅄ᐱ(En+Rn), ∈n+⅄ᐱ(En+Sn), ∈n+⅄ᐱ(En+Tn),∈n+⅄ᐱ(En+Un), ∈n+⅄ᐱ(En+Vn), ∈n+⅄ᐱ(En+Wn), ∈n+⅄ᐱ(En+Yn), ∈n+⅄ᐱ(En+Zn), ∈n+⅄ᐱ(En+φn), ∈n+⅄ᐱ(En+Θn), ∈n+⅄ᐱ(En+Ψn), ∈n+⅄ᐱ(Encn+ᐱncn), ∈n+⅄ᐱ(Encn+ᗑncn), ∈n+⅄ᐱ(Encn+∘⧊°ncn), ∈n+⅄ᐱ(Encn+∘∇°ncn)
∈n+⅄ᐱ(Fn+An), ∈n+⅄ᐱ(Fnx+Bn), ∈n+⅄ᐱ(Fn+Dn), ∈n+⅄ᐱ(Fn+En), ∈n+⅄ᐱ(Fn+Fn), ∈n+⅄ᐱ(Fn+Gn), ∈n+⅄ᐱ(Fn+Hn), ∈n+⅄ᐱ(Fn+In), ∈n+⅄ᐱ(Fn+Jn), ∈n+⅄ᐱ(Fn+Kn), ∈n+⅄ᐱ(Fn+Ln), ∈n+⅄ᐱ(Fn+Mn), ∈n+⅄ᐱ(Fn+Nn), ∈n+⅄ᐱ(Fn+On), ∈n+⅄ᐱ(Fn+Pn), ∈n+⅄ᐱ(Fn+Qn), ∈n+⅄ᐱ(Fn+Rn), ∈n+⅄ᐱ(Fn+Sn), ∈n+⅄ᐱ(Fn+Tn),∈n+⅄ᐱ(Fn+Un), ∈n+⅄ᐱ(Fn+Vn), ∈n+⅄ᐱ(Fn+Wn), ∈n+⅄ᐱ(Fn+Yn), ∈n+⅄ᐱ(Fn+Zn), ∈n+⅄ᐱ(Fn+φn), ∈n+⅄ᐱ(Fn+Θn), ∈n+⅄ᐱ(Fn+Ψn), ∈n+⅄ᐱ(Fncn+ᐱncn), ∈n+⅄ᐱ(Fncn+ᗑncn), ∈n+⅄ᐱ(Fncn+∘⧊°ncn), ∈n+⅄ᐱ(Fncn+∘∇°ncn)
∈n+⅄ᐱ(Gn+An), ∈n+⅄ᐱ(Gn+Bn), ∈n+⅄ᐱ(Gn+Dn), ∈n+⅄ᐱ(Gn+En), ∈n+⅄ᐱ(Gn+Fn), ∈n+⅄ᐱ(Gn+Gn), ∈n+⅄ᐱ(Gn+Hn), ∈n+⅄ᐱ(Gn+In), ∈n+⅄ᐱ(Gn+Jn), ∈n+⅄ᐱ(Gn+Kn), ∈n+⅄ᐱ(Gn+Ln), ∈n+⅄ᐱ(Gn+Mn), ∈n+⅄ᐱ(Gn+Nn), ∈n+⅄ᐱ(Gn+On), ∈n+⅄ᐱ(Gn+Pn), ∈n+⅄ᐱ(Gn+Qn), ∈n+⅄ᐱ(Gn+Rn), ∈n+⅄ᐱ(Gn+Sn), ∈n+⅄ᐱ(Gn+Tn),∈n+⅄ᐱ(Gn+Un), ∈n+⅄ᐱ(Gn+Vn), ∈n+⅄ᐱ(Gn+Wn), ∈n+⅄ᐱ(Gn+Yn), ∈n+⅄ᐱ(Gn+Zn), ∈n+⅄ᐱ(Gn+φn), ∈n+⅄ᐱ(Gn+Θn), ∈n+⅄ᐱ(Gn+Ψn), ∈n+⅄ᐱ(Gncn+ᐱncn), ∈n+⅄ᐱ(Gncn+ᗑncn), ∈n+⅄ᐱ(Gncn+∘⧊°ncn), ∈n+⅄ᐱ(Gncn+∘∇°ncn)
∈n+⅄ᐱ(Hn+An), ∈n+⅄ᐱ(Hn+Bn), ∈n+⅄ᐱ(Hn+Dn), ∈n+⅄ᐱ(Hn+En), ∈n+⅄ᐱ(Hn+Fn), ∈n+⅄ᐱ(Hn+Gn), ∈n+⅄ᐱ(Hn+Hn), ∈n+⅄ᐱ(Hn+In), ∈n+⅄ᐱ(Hn+Jn), ∈n+⅄ᐱ(Hn+Kn), ∈n+⅄ᐱ(Hn+Ln), ∈n+⅄ᐱ(Hn+Mn), ∈n+⅄ᐱ(Hn+Nn), ∈n+⅄ᐱ(Hn+On), ∈n+⅄ᐱ(Hn+Pn), ∈n+⅄ᐱ(Hn+Qn), ∈n+⅄ᐱ(Hn+Rn), ∈n+⅄ᐱ(Hn+Sn), ∈n+⅄ᐱ(Hn+Tn),∈n+⅄ᐱ(Hn+Un), ∈n+⅄ᐱ(Hn+Vn), ∈n+⅄ᐱ(Hn+Wn), ∈n+⅄ᐱ(Hn+Yn), ∈n+⅄ᐱ(Hn+Zn), ∈n+⅄ᐱ(Hn+φn), ∈n+⅄ᐱ(Hn+Θn), ∈n+⅄ᐱ(Hn+Ψn), ∈n+⅄ᐱ(Hncn+ᐱncn), ∈n+⅄ᐱ(Hncn+ᗑncn), ∈n+⅄ᐱ(Hncn+∘⧊°ncn), ∈n+⅄ᐱ(Hncn+∘∇°ncn)
∈n+⅄ᐱ(In+An), ∈n+⅄ᐱ(In+Bn), ∈n+⅄ᐱ(In+Dn), ∈n+⅄ᐱ(In+En), ∈n+⅄ᐱ(In+Fn), ∈n+⅄ᐱ(In+Gn), ∈n+⅄ᐱ(In+Hn), ∈n+⅄ᐱ(In+In), ∈n+⅄ᐱ(In+Jn), ∈n+⅄ᐱ(In+Kn), ∈n+⅄ᐱ(In+Ln), ∈n+⅄ᐱ(In+Mn), ∈n+⅄ᐱ(In+Nn), ∈n+⅄ᐱ(In+On), ∈n+⅄ᐱ(In+Pn), ∈n+⅄ᐱ(In+Qn), ∈n+⅄ᐱ(In+Rn), ∈n+⅄ᐱ(In+Sn), ∈n+⅄ᐱ(In+Tn),∈n+⅄ᐱ(In+Un), ∈n+⅄ᐱ(In+Vn), ∈n+⅄ᐱ(In+Wn), ∈n+⅄ᐱ(In+Yn), ∈n+⅄ᐱ(In+Zn), ∈n+⅄ᐱ(In+φn), ∈n+⅄ᐱ(In+Θn), ∈n+⅄ᐱ(In+Ψn), ∈n+⅄ᐱ(Incn+ᐱncn), ∈n+⅄ᐱ(Incn+ᗑncn), ∈n+⅄ᐱ(Incn+∘⧊°ncn), ∈n+⅄ᐱ(Incn+∘∇°ncn)
∈n+⅄ᐱ(Jn+An), ∈n+⅄ᐱ(Jn+Bn), ∈n+⅄ᐱ(Jn+Dn), ∈n+⅄ᐱ(Jn+En), ∈n+⅄ᐱ(Jn+Fn), ∈n+⅄ᐱ(Jn+Gn), ∈n+⅄ᐱ(Jn+Hn), ∈n+⅄ᐱ(Jn+In), ∈n+⅄ᐱ(Jn+Jn), ∈n+⅄ᐱ(Jn+Kn), ∈n+⅄ᐱ(Jn+Ln), ∈n+⅄ᐱ(Jn+Mn), ∈n+⅄ᐱ(Jn+Nn), ∈n+⅄ᐱ(Jn+On), ∈n+⅄ᐱ(Jn+Pn), ∈n+⅄ᐱ(Jn+Qn), ∈n+⅄ᐱ(Jn+Rn), ∈n+⅄ᐱ(Jn+Sn), ∈n+⅄ᐱ(Jn+Tn),∈n+⅄ᐱ(Jn+Un), ∈n+⅄ᐱ(Jn+Vn), ∈n+⅄ᐱ(Jn+Wn), ∈n+⅄ᐱ(Jn+Yn), ∈n+⅄ᐱ(Jn+Zn), ∈n+⅄ᐱ(Jn+φn), ∈n+⅄ᐱ(Jn+Θn), ∈n+⅄ᐱ(Jn+Ψn), ∈n+⅄ᐱ(Jncn+ᐱncn), ∈n+⅄ᐱ(Jncn+ᗑncn), ∈n+⅄ᐱ(Jncn+∘⧊°ncn), ∈n+⅄ᐱ(Jncn+∘∇°ncn)
∈n+⅄ᐱ(Kn+An), ∈n+⅄ᐱ(Kn+Bn), ∈n+⅄ᐱ(Kn+Dn), ∈n+⅄ᐱ(Kn+En), ∈n+⅄ᐱ(Kn+Fn), ∈n+⅄ᐱ(Kn+Gn), ∈n+⅄ᐱ(Kn+Hn), ∈n+⅄ᐱ(Kn+In), ∈n+⅄ᐱ(Kn+Jn), ∈n+⅄ᐱ(Kn+Kn), ∈n+⅄ᐱ(Kn+Ln), ∈n+⅄ᐱ(Kn+Mn), ∈n+⅄ᐱ(Kn+Nn), ∈n+⅄ᐱ(Kn+On), ∈n+⅄ᐱ(Kn+Pn), ∈n+⅄ᐱ(Kn+Qn), ∈n+⅄ᐱ(Kn+Rn), ∈n+⅄ᐱ(Kn+Sn), ∈n+⅄ᐱ(Kn+Tn),∈n+⅄ᐱ(Kn+Un), ∈n+⅄ᐱ(Kn+Vn), ∈n+⅄ᐱ(Kn+Wn), ∈n+⅄ᐱ(Kn+Yn), ∈n+⅄ᐱ(Kn+Zn), ∈n+⅄ᐱ(Kn+φn), ∈n+⅄ᐱ(Kn+Θn), ∈n+⅄ᐱ(Kn+Ψn), ∈n+⅄ᐱ(Kncn+ᐱncn), ∈n+⅄ᐱ(Kncn+ᗑncn), ∈n+⅄ᐱ(Kncn+∘⧊°ncn), ∈n+⅄ᐱ(Kncn+∘∇°ncn)
∈n+⅄ᐱ(Ln+An), ∈n+⅄ᐱ(Ln+Bn), ∈n+⅄ᐱ(Ln+Dn), ∈n+⅄ᐱ(Ln+En), ∈n+⅄ᐱ(Ln+Fn), ∈n+⅄ᐱ(Ln+Gn), ∈n+⅄ᐱ(Ln+Hn), ∈n+⅄ᐱ(Ln+In), ∈n+⅄ᐱ(Ln+Jn), ∈n+⅄ᐱ(Ln+Kn), ∈n+⅄ᐱ(Ln+Ln), ∈n+⅄ᐱ(Ln+Mn), ∈n+⅄ᐱ(Ln+Nn), ∈n+⅄ᐱ(Ln+On), ∈n+⅄ᐱ(Ln+Pn), ∈n+⅄ᐱ(Ln+Qn), ∈n+⅄ᐱ(Ln+Rn), ∈n+⅄ᐱ(Ln+Sn), ∈n+⅄ᐱ(Ln+Tn),∈n+⅄ᐱ(Ln+Un), ∈n+⅄ᐱ(Ln+Vn), ∈n+⅄ᐱ(Ln+Wn), ∈n+⅄ᐱ(Ln+Yn), ∈n+⅄ᐱ(Ln+Zn), ∈n+⅄ᐱ(Ln+φn), ∈n+⅄ᐱ(Ln+Θn), ∈n+⅄ᐱ(Ln+Ψn), ∈n+⅄ᐱ(Lncn+ᐱncn), ∈n+⅄ᐱ(Lncn+ᗑncn), ∈n+⅄ᐱ(Lncn+∘⧊°ncn), ∈n+⅄ᐱ(Lncn+∘∇°ncn)
∈n+⅄ᐱ(Mn+An), ∈n+⅄ᐱ(Mn+Bn), ∈n+⅄ᐱ(Mn+Dn), ∈n+⅄ᐱ(Mn+En), ∈n+⅄ᐱ(Mn+Fn), ∈n+⅄ᐱ(Mn+Gn), ∈n+⅄ᐱ(Mn+Hn), ∈n+⅄ᐱ(Mn+In), ∈n+⅄ᐱ(Mn+Jn), ∈n+⅄ᐱ(Mn+Kn), ∈n+⅄ᐱ(Mn+Ln), ∈n+⅄ᐱ(Mn+Mn), ∈n+⅄ᐱ(Mn+Nn), ∈n+⅄ᐱ(Mn+On), ∈n+⅄ᐱ(Mn+Pn), ∈n+⅄ᐱ(Mn+Qn), ∈n+⅄ᐱ(Mn+Rn), ∈n+⅄ᐱ(Mn+Sn), ∈n+⅄ᐱ(Mn+Tn),∈n+⅄ᐱ(Mn+Un), ∈n+⅄ᐱ(Mn+Vn), ∈n+⅄ᐱ(Mn+Wn), ∈n+⅄ᐱ(Mn+Yn), ∈n+⅄ᐱ(Mn+Zn), ∈n+⅄ᐱ(Mn+φn), ∈n+⅄ᐱ(Mn+Θn), ∈n+⅄ᐱ(Mn+Ψn), ∈n+⅄ᐱ(Mncn+ᐱncn), ∈n+⅄ᐱ(Mncn+ᗑncn), ∈n+⅄ᐱ(Mncn+∘⧊°ncn), ∈n+⅄ᐱ(Mncn+∘∇°ncn)
∈n+⅄ᐱ(Nn+An), ∈n+⅄ᐱ(Nn+Bn), ∈n+⅄ᐱ(Nn+Dn), ∈n+⅄ᐱ(Nn+En), ∈n+⅄ᐱ(Nn+Fn), ∈n+⅄ᐱ(Nn+Gn), ∈n+⅄ᐱ(Nn+Hn), ∈n+⅄ᐱ(Nn+In), ∈n+⅄ᐱ(Nn+Jn), ∈n+⅄ᐱ(Nn+Kn), ∈n+⅄ᐱ(Nn+Ln), ∈n+⅄ᐱ(Nn+Mn), ∈n+⅄ᐱ(Nn+Nn), ∈n+⅄ᐱ(Nn+On), ∈n+⅄ᐱ(Nn+Pn), ∈n+⅄ᐱ(Nn+Qn), ∈n+⅄ᐱ(Nn+Rn), ∈n+⅄ᐱ(Nn+Sn), ∈n+⅄ᐱ(Nn+Tn),∈n+⅄ᐱ(Nn+Un), ∈n+⅄ᐱ(Nn+Vn), ∈n+⅄ᐱ(Nn+Wn), ∈n+⅄ᐱ(Nn+Yn), ∈n+⅄ᐱ(Nn+Zn), ∈n+⅄ᐱ(Nn+φn), ∈n+⅄ᐱ(Nn+Θn), ∈n+⅄ᐱ(Nn+Ψn), ∈n+⅄ᐱ(Nncn+ᐱncn), ∈n+⅄ᐱ(Nncn+ᗑncn), ∈n+⅄ᐱ(Nncn+∘⧊°ncn), ∈n+⅄ᐱ(Nncn+∘∇°ncn)
∈n+⅄ᐱ(On+An), ∈n+⅄ᐱ(On+Bn), ∈n+⅄ᐱ(On+Dn), ∈n+⅄ᐱ(On+En), ∈n+⅄ᐱ(On+Fn), ∈n+⅄ᐱ(On+Gn), ∈n+⅄ᐱ(On+Hn), ∈n+⅄ᐱ(On+In), ∈n+⅄ᐱ(On+Jn), ∈n+⅄ᐱ(On+Kn), ∈n+⅄ᐱ(On+Ln), ∈n+⅄ᐱ(On+Mn), ∈n+⅄ᐱ(On+Nn), ∈n+⅄ᐱ(On+On), ∈n+⅄ᐱ(On+Pn), ∈n+⅄ᐱ(On+Qn), ∈n+⅄ᐱ(On+Rn), ∈n+⅄ᐱ(On+Sn), ∈n+⅄ᐱ(On+Tn),∈n+⅄ᐱ(On+Un), ∈n+⅄ᐱ(On+Vn), ∈n+⅄ᐱ(On+Wn), ∈n+⅄ᐱ(On+Yn), ∈n+⅄ᐱ(On+Zn), ∈n+⅄ᐱ(On+φn), ∈n+⅄ᐱ(On+Θn), ∈n+⅄ᐱ(On+Ψn), ∈n+⅄ᐱ(Oncn+ᐱncn), ∈n+⅄ᐱ(Oncn+ᗑncn), ∈n+⅄ᐱ(Oncn+∘⧊°ncn), ∈n+⅄ᐱ(Oncn+∘∇°ncn)
∈n+⅄ᐱ(Pn+An), ∈n+⅄ᐱ(Pn+Bn), ∈n+⅄ᐱ(Pn+Dn), ∈n+⅄ᐱ(Pn+En), ∈n+⅄ᐱ(Pn+Fn), ∈n+⅄ᐱ(Pn+Gn), ∈n+⅄ᐱ(Pn+Hn), ∈n+⅄ᐱ(Pn+In), ∈n+⅄ᐱ(Pn+Jn), ∈n+⅄ᐱ(Pn+Kn), ∈n+⅄ᐱ(Pn+Ln), ∈n+⅄ᐱ(Pn+Mn), ∈n+⅄ᐱ(Pn+Nn), ∈n+⅄ᐱ(Pn+On), ∈n+⅄ᐱ(Pn+Pn), ∈n+⅄ᐱ(Pn+Qn), ∈n+⅄ᐱ(Pn+Rn), ∈n+⅄ᐱ(Pn+Sn), ∈n+⅄ᐱ(Pn+Tn),∈n+⅄ᐱ(Pn+Un), ∈n+⅄ᐱ(Pn+Vn), ∈n+⅄ᐱ(Pn+Wn), ∈n+⅄ᐱ(Pn+Yn), ∈n+⅄ᐱ(Pn+Zn), ∈n+⅄ᐱ(Pn+φn), ∈n+⅄ᐱ(Pn+Θn), ∈n+⅄ᐱ(Pn+Ψn), ∈n+⅄ᐱ(Pncn+ᐱncn), ∈n+⅄ᐱ(Pncn+ᗑncn), ∈n+⅄ᐱ(Pncn+∘⧊°ncn), ∈n+⅄ᐱ(Pncn+∘∇°ncn)
∈n+⅄ᐱ(Qn+An), ∈n+⅄ᐱ(Qn+Bn), ∈n+⅄ᐱ(Qn+Dn), ∈n+⅄ᐱ(Qn+En), ∈n+⅄ᐱ(Qn+Fn), ∈n+⅄ᐱ(Qn+Gn), ∈n+⅄ᐱ(Qn+Hn), ∈n+⅄ᐱ(Qn+In), ∈n+⅄ᐱ(Qn+Jn), ∈n+⅄ᐱ(Qn+Kn), ∈n+⅄ᐱ(Qn+Ln), ∈n+⅄ᐱ(Qn+Mn), ∈n+⅄ᐱ(Qn+Nn), ∈n+⅄ᐱ(Qn+On), ∈n+⅄ᐱ(Qn+Pn), ∈n+⅄ᐱ(Qn+Qn), ∈n+⅄ᐱ(Qn+Rn), ∈n+⅄ᐱ(Qn+Sn), ∈n+⅄ᐱ(Qn+Tn),∈n+⅄ᐱ(Qn+Un), ∈n+⅄ᐱ(Qn+Vn), ∈n+⅄ᐱ(Qn+Wn), ∈n+⅄ᐱ(Qn+Yn), ∈n+⅄ᐱ(Qn+Zn), ∈n+⅄ᐱ(Qn+φn), ∈n+⅄ᐱ(Qn+Θn), ∈n+⅄ᐱ(Qn+Ψn), ∈n+⅄ᐱ(Qncn+ᐱncn), ∈n+⅄ᐱ(Qncn+ᗑncn), ∈n+⅄ᐱ(Qncn+∘⧊°ncn), ∈n+⅄ᐱ(Qncn+∘∇°ncn)
∈n+⅄ᐱ(Rn+An), ∈n+⅄ᐱ(Rn+Bn), ∈n+⅄ᐱ(Rn+Dn), ∈n+⅄ᐱ(Rn+En), ∈n+⅄ᐱ(Rn+Fn), ∈n+⅄ᐱ(Rn+Gn), ∈n+⅄ᐱ(Rn+Hn), ∈n+⅄ᐱ(Rn+In), ∈n+⅄ᐱ(Rn+Jn), ∈n+⅄ᐱ(Rn+Kn), ∈n+⅄ᐱ(Rn+Ln), ∈n+⅄ᐱ(Rn+Mn), ∈n+⅄ᐱ(Rn+Nn), ∈n+⅄ᐱ(Rn+On), ∈n+⅄ᐱ(Rn+Pn), ∈n+⅄ᐱ(Rn+Qn), ∈n+⅄ᐱ(Rn+Rn), ∈n+⅄ᐱ(Rn+Sn), ∈n+⅄ᐱ(Rn+Tn),∈n+⅄ᐱ(Rn+Un), ∈n+⅄ᐱ(Rn+Vn), ∈n+⅄ᐱ(Rn+Wn), ∈n+⅄ᐱ(Rn+Yn), ∈n+⅄ᐱ(Rn+Zn), ∈n+⅄ᐱ(Rn+φn), ∈n+⅄ᐱ(Rn+Θn), ∈n+⅄ᐱ(Rn+Ψn), ∈n+⅄ᐱ(Rncn+ᐱncn), ∈n+⅄ᐱ(Rncn+ᗑncn), ∈n+⅄ᐱ(Rncn+∘⧊°ncn), ∈n+⅄ᐱ(Rncn+∘∇°ncn)
∈n+⅄ᐱ(Sn+An), ∈n+⅄ᐱ(Sn+Bn), ∈n+⅄ᐱ(Sn+Dn), ∈n+⅄ᐱ(Sn+En), ∈n+⅄ᐱ(Sn+Fn), ∈n+⅄ᐱ(Sn+Gn), ∈n+⅄ᐱ(Sn+Hn), ∈n+⅄ᐱ(Sn+In), ∈n+⅄ᐱ(Sn+Jn), ∈n+⅄ᐱ(Sn+Kn), ∈n+⅄ᐱ(Sn+Ln), ∈n+⅄ᐱ(Sn+Mn), ∈n+⅄ᐱ(Sn+Nn), ∈n+⅄ᐱ(Sn+On), ∈n+⅄ᐱ(Sn+Pn), ∈n+⅄ᐱ(Sn+Qn), ∈n+⅄ᐱ(Sn+Rn), ∈n+⅄ᐱ(Sn+Sn), ∈n+⅄ᐱ(Sn+Tn),∈n+⅄ᐱ(Sn+Un), ∈n+⅄ᐱ(Sn+Vn), ∈n+⅄ᐱ(Sn+Wn), ∈n+⅄ᐱ(Sn+Yn), ∈n+⅄ᐱ(Sn+Zn), ∈n+⅄ᐱ(Sn+φn), ∈n+⅄ᐱ(Sn+Θn), ∈n+⅄ᐱ(Sn+Ψn), ∈n+⅄ᐱ(Sncn+ᐱncn), ∈n+⅄ᐱ(Sncn+ᗑncn), ∈n+⅄ᐱ(Sncn+∘⧊°ncn), ∈n+⅄ᐱ(Sncn+∘∇°ncn)
∈n+⅄ᐱ(Tn+An), ∈n+⅄ᐱ(Tn+Bn), ∈n+⅄ᐱ(Tn+Dn), ∈n+⅄ᐱ(Tn+En), ∈n+⅄ᐱ(Tn+Fn), ∈n+⅄ᐱ(Tn+Gn), ∈n+⅄ᐱ(Tn+Hn), ∈n+⅄ᐱ(Tn+In), ∈n+⅄ᐱ(Tn+Jn), ∈n+⅄ᐱ(Tn+Kn), ∈n+⅄ᐱ(Tn+Ln), ∈n+⅄ᐱ(Tn+Mn), ∈n+⅄ᐱ(Tn+Nn), ∈n+⅄ᐱ(Tn+On), ∈n+⅄ᐱ(Tn+Pn), ∈n+⅄ᐱ(Tn+Qn), ∈n+⅄ᐱ(Tn+Rn), ∈n+⅄ᐱ(Tn+Sn), ∈n+⅄ᐱ(Tn+Tn),∈n+⅄ᐱ(Tn+Un), ∈n+⅄ᐱ(Tn+Vn), ∈n+⅄ᐱ(Tn+Wn), ∈n+⅄ᐱ(Tn+Yn), ∈n+⅄ᐱ(Tn+Zn), ∈n+⅄ᐱ(Tn+φn), ∈n+⅄ᐱ(Tn+Θn), ∈n+⅄ᐱ(Tn+Ψn), ∈n+⅄ᐱ(Tncn+ᐱncn), ∈n+⅄ᐱ(Tncn+ᗑncn), ∈n+⅄ᐱ(Tncn+∘⧊°ncn), ∈n+⅄ᐱ(Tncn+∘∇°ncn)
∈n+⅄ᐱ(Un+An), ∈n+⅄ᐱ(Un+Bn), ∈n+⅄ᐱ(Un+Dn), ∈n+⅄ᐱ(Un+En), ∈n+⅄ᐱ(Un+Fn), ∈n+⅄ᐱ(Un+Gn), ∈n+⅄ᐱ(Un+Hn), ∈n+⅄ᐱ(Un+In), ∈n+⅄ᐱ(Un+Jn), ∈n+⅄ᐱ(Un+Kn), ∈n+⅄ᐱ(Un+Ln), ∈n+⅄ᐱ(Un+Mn), ∈n+⅄ᐱ(Un+Nn), ∈n+⅄ᐱ(Un+On), ∈n+⅄ᐱ(Un+Pn), ∈n+⅄ᐱ(Un+Qn), ∈n+⅄ᐱ(Un+Rn), ∈n+⅄ᐱ(Un+Sn), ∈n+⅄ᐱ(Un+Tn),∈n+⅄ᐱ(Un+Un), ∈n+⅄ᐱ(Un+Vn), ∈n+⅄ᐱ(Un+Wn), ∈n+⅄ᐱ(Un+Yn), ∈n+⅄ᐱ(Un+Zn), ∈n+⅄ᐱ(Un+φn), ∈n+⅄ᐱ(Un+Θn), ∈n+⅄ᐱ(Un+Ψn), ∈n+⅄ᐱ(Uncn+ᐱncn), ∈n+⅄ᐱ(Uncn+ᗑncn), ∈n+⅄ᐱ(Uncn+∘⧊°ncn), ∈n+⅄ᐱ(Uncn+∘∇°ncn)
∈n+⅄ᐱ(Vn+An), ∈n+⅄ᐱ(Vn+Bn), ∈n+⅄ᐱ(Vn+Dn), ∈n+⅄ᐱ(Vn+En), ∈n+⅄ᐱ(Vn+Fn), ∈n+⅄ᐱ(Vn+Gn), ∈n+⅄ᐱ(Vn+Hn), ∈n+⅄ᐱ(Vn+In), ∈n+⅄ᐱ(Vn+Jn), ∈n+⅄ᐱ(Vn+Kn), ∈n+⅄ᐱ(Vn+Ln), ∈n+⅄ᐱ(Vn+Mn), ∈n+⅄ᐱ(Vn+Nn), ∈n+⅄ᐱ(Vn+On), ∈n+⅄ᐱ(Vn+Pn), ∈n+⅄ᐱ(Vn+Qn), ∈n+⅄ᐱ(Vn+Rn), ∈n+⅄ᐱ(Vn+Sn), ∈n+⅄ᐱ(Vn+Tn),∈n+⅄ᐱ(Vn+Un), ∈n+⅄ᐱ(Vn+Vn), ∈n+⅄ᐱ(Vn+Wn), ∈n+⅄ᐱ(Vn+Yn), ∈n+⅄ᐱ(Vn+Zn), ∈n+⅄ᐱ(Vn+φn), ∈n+⅄ᐱ(Vn+Θn), ∈n+⅄ᐱ(Vn+Ψn), ∈n+⅄ᐱ(Vncn+ᐱncn), ∈n+⅄ᐱ(Vncn+ᗑncn), ∈n+⅄ᐱ(Vncn+∘⧊°ncn), ∈n+⅄ᐱ(Vncn+∘∇°ncn)
∈n+⅄ᐱ(Wn+An), ∈n+⅄ᐱ(Wn+Bn), ∈n+⅄ᐱ(Wn+Dn), ∈n+⅄ᐱ(Wn+En), ∈n+⅄ᐱ(Wn+Fn), ∈n+⅄ᐱ(Wn+Gn), ∈n+⅄ᐱ(Wn+Hn), ∈n+⅄ᐱ(Wn+In), ∈n+⅄ᐱ(Wn+Jn), ∈n+⅄ᐱ(Wn+Kn), ∈n+⅄ᐱ(Wn+Ln), ∈n+⅄ᐱ(Wn+Mn), ∈n+⅄ᐱ(Wn+Nn), ∈n+⅄ᐱ(Wn+On), ∈n+⅄ᐱ(Wn+Pn), ∈n+⅄ᐱ(Wn+Qn), ∈n+⅄ᐱ(Wn+Rn), ∈n+⅄ᐱ(Wn+Sn), ∈n+⅄ᐱ(Wn+Tn),∈n+⅄ᐱ(Wn+Un), ∈n+⅄ᐱ(Wn+Vn), ∈n+⅄ᐱ(Wn+Wn), ∈n+⅄ᐱ(Wn+Yn), ∈n+⅄ᐱ(Wn+Zn), ∈n+⅄ᐱ(Wn+φn), ∈n+⅄ᐱ(Wn+Θn), ∈n+⅄ᐱ(Wn+Ψn), ∈n+⅄ᐱ(Wncn+ᐱncn), ∈n+⅄ᐱ(Wncn+ᗑncn), ∈n+⅄ᐱ(Wncn+∘⧊°ncn), ∈n+⅄ᐱ(Wncn+∘∇°ncn)
∈n+⅄ᐱ(Yn+An), ∈n+⅄ᐱ(Yn+Bn), ∈n+⅄ᐱ(Yn+Dn), ∈n+⅄ᐱ(Yn+En), ∈n+⅄ᐱ(Yn+Fn), ∈n+⅄ᐱ(Yn+Gn), ∈n+⅄ᐱ(Yn+Hn), ∈n+⅄ᐱ(Yn+In), ∈n+⅄ᐱ(Yn+Jn), ∈n+⅄ᐱ(Yn+Kn), ∈n+⅄ᐱ(Yn+Ln), ∈n+⅄ᐱ(Yn+Mn), ∈n+⅄ᐱ(Yn+Nn), ∈n+⅄ᐱ(Yn+On), ∈n+⅄ᐱ(Yn+Pn), ∈n+⅄ᐱ(Yn+Qn), ∈n+⅄ᐱ(Yn+Rn), ∈n+⅄ᐱ(Yn+Sn), ∈n+⅄ᐱ(Yn+Tn),∈n+⅄ᐱ(Yn+Un), ∈n+⅄ᐱ(Yn+Vn), ∈n+⅄ᐱ(Yn+Wn), ∈n+⅄ᐱ(Yn+Yn), ∈n+⅄ᐱ(Yn+Zn), ∈n+⅄ᐱ(Yn+φn), ∈n+⅄ᐱ(Yn+Θn), ∈n+⅄ᐱ(Yn+Ψn), ∈n+⅄ᐱ(Yncn+ᐱncn), ∈n+⅄ᐱ(Yncn+ᗑncn), ∈n+⅄ᐱ(Yncn+∘⧊°ncn), ∈n+⅄ᐱ(Yncn+∘∇°ncn)
∈n+⅄ᐱ(Zn+An), ∈n+⅄ᐱ(Zn+Bn), ∈n+⅄ᐱ(Zn+Dn), ∈n+⅄ᐱ(Zn+En), ∈n+⅄ᐱ(Zn+Fn), ∈n+⅄ᐱ(Zn+Gn), ∈n+⅄ᐱ(Zn+Hn), ∈n+⅄ᐱ(Zn+In), ∈n+⅄ᐱ(Zn+Jn), ∈n+⅄ᐱ(Zn+Kn), ∈n+⅄ᐱ(Zn+Ln), ∈n+⅄ᐱ(Zn+Mn), ∈n+⅄ᐱ(Zn+Nn), ∈n+⅄ᐱ(Zn+On), ∈n+⅄ᐱ(Zn+Pn), ∈n+⅄ᐱ(Zn+Qn), ∈n+⅄ᐱ(Zn+Rn), ∈n+⅄ᐱ(Zn+Sn), ∈n+⅄ᐱ(Zn+Tn),∈n+⅄ᐱ(Zn+Un), ∈n+⅄ᐱ(Zn+Vn), ∈n+⅄ᐱ(Zn+Wn), ∈n+⅄ᐱ(Zn+Yn), ∈n+⅄ᐱ(Zn+Zn), ∈n+⅄ᐱ(Zn+φn), ∈n+⅄ᐱ(Zn+Θn), ∈n+⅄ᐱ(Zn+Ψn), ∈n+⅄ᐱ(Zncn+ᐱncn), ∈n+⅄ᐱ(Zncn+ᗑncn), ∈n+⅄ᐱ(Zncn+∘⧊°ncn), ∈n+⅄ᐱ(Zncn+∘∇°ncn)
∈n+⅄ᐱ(φn+An), ∈n+⅄ᐱ(φn+Bn), ∈n+⅄ᐱ(φn+Dn), ∈n+⅄ᐱ(φn+En), ∈n+⅄ᐱ(φn+Fn), ∈n+⅄ᐱ(φn+Gn), ∈n+⅄ᐱ(φn+Hn), ∈n+⅄ᐱ(φn+In), ∈n+⅄ᐱ(φn+Jn), ∈n+⅄ᐱ(φn+Kn), ∈n+⅄ᐱ(φn+Ln), ∈n+⅄ᐱ(φn+Mn), ∈n+⅄ᐱ(φn+Nn), ∈n+⅄ᐱ(φn+On), ∈n+⅄ᐱ(φn+Pn), ∈n+⅄ᐱ(φn+Qn), ∈n+⅄ᐱ(φn+Rn), ∈n+⅄ᐱ(φn+Sn), ∈n+⅄ᐱ(φn+Tn),∈n+⅄ᐱ(φn+Un), ∈n+⅄ᐱ(φn+Vn), ∈n+⅄ᐱ(φn+Wn), ∈n+⅄ᐱ(φn+Yn), ∈n+⅄ᐱ(φn+Zn), ∈n+⅄ᐱ(φn+φn), ∈n+⅄ᐱ(φn+Θn), ∈n+⅄ᐱ(φn+Ψn), ∈n+⅄ᐱ(φncn+ᐱncn), ∈n+⅄ᐱ(φncn+ᗑncn), ∈n+⅄ᐱ(φncn+∘⧊°ncn), ∈n+⅄ᐱ(φncn+∘∇°ncn)
∈n+⅄ᐱ(Θn+An), ∈n⅄+⅄ᐱ(Θn+Bn), ∈n+⅄ᐱ(Θn+Dn), ∈n+⅄ᐱ(Θn+En), ∈n+⅄ᐱ(Θn+Fn), ∈n+⅄ᐱ(Θn+Gn), ∈n+⅄ᐱ(Θn+Hn), ∈n+⅄ᐱ(Θn+In), ∈n+⅄ᐱ(Θn+Jn), ∈n+⅄ᐱ(Θn+Kn), ∈n+⅄ᐱ(Θn+Ln), ∈n+⅄ᐱ(Θn+Mn), ∈n+⅄ᐱ(Θn+Nn), ∈n+⅄ᐱ(Θn+On), ∈n+⅄ᐱ(Θn+Pn), ∈n+⅄ᐱ(Θn+Qn), ∈n+⅄ᐱ(Θn+Rn), ∈n+⅄ᐱ(Θn+Sn), ∈n+⅄ᐱ(Θn+Tn),∈n+⅄ᐱ(Θn+Un), ∈n+⅄ᐱ(Θn+Vn), ∈n+⅄ᐱ(Θn+Wn), ∈n+⅄ᐱ(Θn+Yn), ∈n+⅄ᐱ(Θn+Zn), ∈n+⅄ᐱ(Θn+φn), ∈n+⅄ᐱ(Θn+Θn), ∈n+⅄ᐱ(Θn+Ψn), ∈n+⅄ᐱ(Θncn+ᐱncn), ∈n+⅄ᐱ(Θncn+ᗑncn), ∈n+⅄ᐱ(Θncn+∘⧊°ncn), ∈n+⅄ᐱ(Θncn+∘∇°ncn)
∈n+⅄ᐱ(Ψn+An), ∈n+⅄ᐱ(Ψn+Bn), ∈n+⅄ᐱ(Ψn+Dn), ∈n+⅄ᐱ(Ψn+En), ∈n+⅄ᐱ(Ψn+Fn), ∈n+⅄ᐱ(Ψn+Gn), ∈n+⅄ᐱ(Ψn+Hn), ∈n+⅄ᐱ(Ψn+In), ∈n+⅄ᐱ(Ψn+Jn), ∈n+⅄ᐱ(Ψn+Kn), ∈n+⅄ᐱ(Ψn+Ln), ∈n+⅄ᐱ(Ψn+Mn), ∈n+⅄ᐱ(Ψn+Nn), ∈n+⅄ᐱ(Ψn+On), ∈n+⅄ᐱ(Ψn+Pn), ∈n+⅄ᐱ(Ψn+Qn), ∈n+⅄ᐱ(Ψn+Rn), ∈n+⅄ᐱ(Ψn+Sn), ∈n+⅄ᐱ(Ψn+Tn),∈n+⅄ᐱ(Ψn+Un), ∈n+⅄ᐱ(Ψn+Vn), ∈n+⅄ᐱ(Ψn+Wn), ∈n+⅄ᐱ(Ψn+Yn), ∈n+⅄ᐱ(Ψn+Zn), ∈n+⅄ᐱ(Ψn+φn), ∈n+⅄ᐱ(Ψn+Θn), ∈n+⅄ᐱ(Ψn+Ψn), ∈n+⅄ᐱ(Ψncn+ᐱncn), ∈n+⅄ᐱ(Ψncn+ᗑncn), ∈n+⅄ᐱ(Ψncn+∘⧊°ncn), ∈n+⅄ᐱ(Ψncn+∘∇°ncn)
email@1dir.cc
c.dir.1dir.cc c.dir.1dir.org c.dir.1dir.cloud
c://dir